Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption
نویسندگان
چکیده
Although lattice-based cryptography has proven to be a particularly efficient approach to post-quantum cryptography, its security against side-channel attacks is still a very open topic. There already exist some first works that use masking to achieve DPA security. However, for public-key primitives SPA attacks that use just a single trace are also highly relevant. For lattice-based cryptography this implementationsecurity aspect is still unexplored. In this work, we present the first single-trace attack on lattice-based encryption. As only a single side-channel observation is needed for full key recovery, it can also be used to attack masked implementations. We use leakage coming from the Number Theoretic Transform, which is at the heart of almost all efficient lattice-based implementations. This means that our attack can be adapted to a large range of other latticebased constructions and their respective implementations. Our attack consists of 3 main steps. First, we perform a template matching on all modular operations in the decryption process. Second, we efficiently combine all this side-channel information using belief propagation. And third, we perform a lattice-decoding to recover the private key. We show that the attack allows full key recovery not only in a generic noisy Hamming-weight setting, but also based on real traces measured on an ARM Cortex-M4F microcontroller.
منابع مشابه
Successfully Attacking Masked AES Hardware Implementations
During the last years, several masking schemes for AES have been proposed to secure hardware implementations against DPA attacks. In order to investigate the effectiveness of these countermeasures in practice, we have designed and manufactured an ASIC. The chip features an unmasked and two masked AES-128 encryption engines that can be attacked independently. In addition to conventional DPA atta...
متن کاملPerformance Counters to Rescue: A Machine Learning based safeguard against Micro-architectural Side-Channel-Attacks
Micro-architectural side-channel-attacks are presently daunting threats to most mathematically elegant encryption algorithms. Even though there exist various defense mechanisms, most of them come with the extra overhead of implementation. Recent studies have prevented some particular categories of these attacks but fail to address the detection of other classes. This paper presents a generic ma...
متن کاملA Novel Image Encryption Model Based on Hybridization of Genetic Algorithm, Chaos Theory and Lattice Map
Encryption is an important issue in information security which is usually provided using a reversible mathematical model. Digital image as a most frequently used digital product needs special encryption algorithms. This paper presents a new encryption algorithm high security for digital gray images using genetic algorithm and Lattice Map function. At the first the initial value of Logistic Map ...
متن کاملA Very Compact "Perfectly Masked" S-Box for AES
Implementations of the Advanced Encryption Standard (AES), including hardware applications with limited resources (e.g., smart cards), may be vulnerable to “side-channel attacks” such as differential power analysis. One countermeasure against such attacks is adding a random mask to the data; this randomizes the statistics of the calculation at the cost of computing “mask corrections.” The singl...
متن کاملA Very Compact "Perfectly Masked" S-Box for AES (corrected)
Implementations of the Advanced Encryption Standard (AES), including hardware applications with limited resources (e.g., smart cards), may be vulnerable to “side-channel attacks” such as differential power analysis. One countermeasure against such attacks is adding a random mask to the data; this randomizes the statistics of the calculation at the cost of computing “mask corrections.” The singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017